3,194 research outputs found

    Presentación de Pedro Laín Entralgo

    Get PDF

    Ediacaran Obduction of a Fore-Arc Ophiolite in SW Iberia: A Turning Point in the Evolving Geodynamic Setting of Peri- Gondwana

    Get PDF
    The Calzadilla Ophiolite is an ensemble of mafic and ultramafic rocks that represents the transition between lower crust and upper mantle of a Cadomian (peri-Gondwanan) fore arc. Mapping and structural analysis of the ophiolite demonstrates that it was obducted in latest Ediacaran times, because the Ediacaran-Early Cambrian sedimentary series (Malcocinado Formation) discordantly covers it. The ophiolite and emplacement-related structures are affected by Variscan deformation (Devonian-Carboniferous), which includes SW verging overturned folds (D1) and thrusts (D2), upright folds (D3), extensional faults (D4), and later faults (D5). These phases of deformation are explained in the context of Variscan tectonics as the result of the progressive collision between Gondwana and Laurussia. Qualitative unstraining of Variscan deformation reveals the primary geometry of Ediacaran-Cambrian structures and uncovers the generation of east verging thrusts as responsible for the primary obduction of the Calzadilla Ophiolite. Restoration of planar and linear structures associated with this event indicates an Ediacaran, east directed obduction of the ophiolite, that is, emplacement of the Cadomian fore arc onto inner sections of the northern margin of Gondwana. According to regional data, the obduction separates two extension-dominated stages in the tectonic evolution of the African margin of northern Gondwana preserved in southern Europe. Preobduction extension brought about the onset and widening of fore-arc and back-arc basins in the external part of the continent, while postobduction extension facilitated the formation of extensional migmatitic domes, an oceanward migration of back-arc spreading centers across peri-Gondwana, and the eventual opening of a major basin such as the Rheic Ocean

    An AER handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links

    Get PDF
    Nowadays spike-based brain processing emulation is taking off. Several EU and others worldwide projects are demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or NeuroGrid. The larger the brain process emulation on silicon is, the higher the communication performance of the hosting platforms has to be. Many times the bottleneck of these system implementations is not on the performance inside a chip or a board, but in the communication between boards. This paper describes a novel modular Address-Event-Representation (AER) FPGA-based (Spartan6) infrastructure PCB (the AER-Node board) with 2.5Gbps LVDS high speed serial links over SATA cables that offers a peak performance of 32-bit 62.5Meps (Mega events per second) on board-to-board communications. The board allows back compatibility with parallel AER devices supporting up to x2 28-bit parallel data with asynchronous handshake. These boards also allow modular expansion functionality through several daughter boards. The paper is focused on describing in detail the LVDS serial interface and presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076

    Activación alcalina de cenizas volantes. Relación entre el desarrollo mecánico resistente y la composición química de la ceniza

    Get PDF
    Alkali-activated fly ash is the primary component of a new generation of high-strength, durable binders with excellent mechanical properties and durability (on occasion bettering traditional Portland cement performance). Moreover, development of these cements may contribute to mitigating CO2 emissions, since the base material is an industrial by-product. The present study was conducted to determine the effect of the composition of the initial materials (SiO2/Al2O3 and Na2O/Al2O3 ratios) on the mechanical properties, nature and composition of the reaction products. The results obtained indicate that there is no linear relationship between these ratios and mechanical strength, but rather a series of optimal values above and below which strength declines. In the specific case of the ratios studied in the present paper, these values were: SiO2/Al2O3= 4.0 and Na2O/Al2O3= 1.0 (molar ratios).Las cenizas volantes activadas alcalinamente constituyen la base de una nueva generación de cementos con muy interesantes propiedades mecánicas, adherentes y durables (a veces incluso mejores que las de los cementos Portland tradicionales). Adicionalmente el desarrollo de estos cementos podría contribuir a mitigar las emisiones de CO2 a la atmósfera, ya que el material base de los mismos puede estar formado por subproductos industriales. En la presente investigación se realizó un estudio para determinar la influencia de la composición de los materiales iniciales (ratios SiO2/Al2O3 y Na2O/Al2O3) en las propiedades mecánicas y en la naturaleza y composición de los productos de reacción. Los resultados obtenidos indican que no existe una relación lineal de dichas ratios con las resistencias mecánicas, sino que existen unos valores óptimos, por encima y debajo de los cuales las resistencias mecánicas disminuyen. En el caso concreto de las ratios estudiadas en el presente trabajo estos valores serian: SiO2/Al2O3= 4,0 y Na2O/Al2O3= 1,0 (relaciones molares

    Sharp values for the constants in the polynomial Bohnenblust-Hille inequality

    Get PDF
    In this paper we prove that the complex polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in C2{\mathbb C}^2 is exactly 324\sqrt[4]{\frac{3}{2}}. We also give the exact value of the real polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in R2{\mathbb R}^2. Finally, we provide lower estimates for the real polynomial Bohnenblust-Hille constant for polynomials in R2{\mathbb R}^2 of higher degrees.Comment: 16 page

    Hydration of clinker phases in alkaline conditions

    Get PDF
    This research is focused on the individual behaviour of calcium silicates (C3S and C2S) and tricalcium aluminate (C3A) when hydrated with water, but in the presence of 4 wt% Na2SO4. Two- and 28‑day mechanical strength of pastes were determined and the reaction products were identified by means of XRD, SEM/EDX and 29Si and 27 Al MAS NMR. Analysis of C3A revealed that hydration was favoured in the presence of Na2SO4. This salt governed hydration kinetics while providing the alkalinity required to induce the joint precipitation of carbonated and calcium sulfoaluminate hydrate reaction product, both observed to contribute to the mechanical strength of the resulting material. In both silicates (C3S and C2S), the findings showed that the presence of Na2SO4 stimulated mechanical strength development. The synergy among all chemical reactions taking place during the hydration of these calcium silicates favoured a substantial rise in the alkalinity of the pastes formed. In addition, the anion SO42- induced the precipitation of cementitious gels with a high percentage of Q2 units, which leads to a significant increase in the mechanical strength of the materials at 28 day
    corecore